المثلث متساوي الساقين يكون طول ضلعين من أضلاعه على الأقل متساويين، و قياس زاويتين من زواياه متساويتين أيضاً، ويُعتبر المثلث القائم الذي تكون قياس زواياه 90 – 45 – 45 حالة خاصة من المثلث متساوي الساقين، ويُطلق عليه اسم المثلث متساوي الساقين قائم الزاوية، ويتميز المثلث متساوي الساقين بالخصائص الآتية إضافة إلى الخصائص العامة للمثلث:
يُمكن حساب قياس الضلع الثالث للمثلث متساوي الساقين عند معرفة قياس الضلعين الآخرين، وبما أنّ الارتفاع يصنع زاوية قائمة مع منتصف القاعدة فإنّه يُمكن استخدام نظرية فيثاغورس لإيجاد قيمة هذه الأبعاد، وفيما يأتي توضيح لكيفية إجراء ذلك:
يُمكن حساب قاعدة المثلث في حال معرفة طول أحد الضلعين المتساويين (ل)، وارتفاع المثلث (ع) باستخدام العلاقة الآتية:
قاعدة المثلث = (مربع طول إحدى الساقين المتساويتين – مربع الارتفاع)√×2
يُمكن إيجاد طول أحد الضلعين المتساويين (ل) في حال معرفة طول قاعدة المثلث (ب)، وارتفاعه (ع) باستخدام العلاقة الآتية :
طول إحدى ساقي المثلث المتساويتين= (مربع الارتفاع + مربع نصف طول القاعدة)√
يُمكن حساب ارتفاع المثلث المتساوي الساقين (ع) في حال معرفة طول أحد الضلعين المتساويين (ل)، و طول قاعدة المثلث (ب) باستخدام العلاقة الآتية:
الارتفاع= (مربع طول إحدى الساقين المتساويتين – مربع نصف طول القاعدة)√
يُمكن إيجاد قياس جميع زوايا المثلث متساوي الساقين في حال معرفة قياس زاوية واحدة فقط في المثلث، والمثالان الآتيان يوضحان ذلك:
مثلث متساوي الساقين قياس زاوية رأس المثلث 40 درجة، فما هو قياس الزوايا الأخرى؟
إذا كانت قيمة إحدى زوايا قاعدة المثلث متساوي الساقين تساوي 45 درجة، فما هو قياس الزوايا الأخرى؟
ملاحظة: المثلث متساوي الساقين قائم الزاوية يمثل فيه الضلعان المتساويان ضلعي القائمة بحيث يمثّل أحد الضلعين قاعدة المثلث، والضلع الآخر ارتفاعه، وأما الضلع الثالث فيمثّل الوتر في المثلث القائم، وبالتالي فإنه يُمكن استخدام نظرية فيثاغورس لإيجاد قيمة كل من الأضلاع الثلاثة، وذلك كما يأتي:
المثال الأول: مثلث أ ب جـ، فيه طول أب = أ جـ فإذا كان قياس الزاوية ب أ جـ يساوي 40 درجة، فما هو قياس ∠أ ب جـ؟
المثال الثاني: مثلث أ ب جـ متساوي الساقين، فإذا كان قياس الزاوية أ ب جـ يساوي 50 درجة فما هي احتمالات قياس الزاوية ب أ جـ؟
المثال الثالث: مثلث متساوي الساقين أ ب جـ، وفيه الضلع د جـ يمثل المستقيم الواصل بين الرأس جــ، والقاعدة أ ب، وفيه أ د = د جـ = جـ ب، فإذا كانت قياس الزاوية د أ جـ يساوي 40 درجة، فما هو قياس ∠ د جـ ب؟
المثال الرابع: مثلث متساوي الساقين قياس إحدى زاويتي قاعدة المثلث (4س+12)، وقياس الزاوية الأخرى (5س-3)، فما هي قيمة س، وما هو قياس زوايا المثلث؟
المثال الخامس: مثلث متساوي الساقين قياس إحدى زاويتي القاعدة 47، فما هو قياس زاوية رأس المثلث؟
الحل: بما أن المثلث متساوي الساقين فإن زوايا القاعدة متساوية، وبالتالي فإن قياس زاوية القاعدة الأخرى 47 درجة أيضاً.
المثال السادس: مثلث متساوي الساقين فيه قياس زاوية الرأس 116، فما هو قياس زاويتي القاعدة؟
المثال السابع: مثلث متساوي الساقين فيه طول أحد الضلعين المتساويين 19س + 3، وطول الضلع الآخر 8س + 14، فما هي قيمة س؟
المثال الثامن: مثلث متساوي الساقين فيه طول أحد الضلعين المتساويين 5ص – 2، وطول الضلع الآخر 13، فما هي قيمة ص؟
المثال التاسع: مثلث متساوي الساقين فيه قياس زاويتي القاعدة 8ص – 16، والزاوية الأخرى 72، وقياس زاوية الرأس 9س، فما هي قيمة س، وص؟
المثال العاشر: مثلث متساوي الساقين قائم الزاوية طول ضلعيه المتساويين اللذين يمثلان ضلعي القائمة 6.5 سم، فما هو طول الوتر؟
المثال الحادي عشر: مثلث متساوي الساقين قائم الزاوية فإذا كان طول الوتر فيه 10√ سم، فما هو طول ضلعي القائمة المتساويين؟
يتكون المثلث المتساوي الساقين من ضلعين وزاويتين متساويتين، ويُمكن حساب الضلع الثالث للمثلث المتساوي الساقين بمعرفة قيمة أحد الضلعين المتساويين وبمعرفة ارتفاع المثلث، وباستخدام نظرية فيثاغوروس، كما يُمكن حساب زوايا المثلث المتساوي الساقين بمعرفة قيمة إحدى زواياه.