تعرف مساحة متوازي الأضلاع (بالإنجليزية: Area of Parallelogram)، بأنها الفضاء ثنائي الأبعاد الذي يُشغله متوازي الأضلاع أو عدد الوحدات المربعة التي يغطيها متوازي الأضلاع، كما يمتلك متوازي الأضلاع العديد من الخصائص التي تميزه عن باقي الأشكال الهندسية، فهو أحد الأشكال الرباعية التي يكون فيها كل ضلعين متقابلين متساويين ومتوازيين، وكلّ زاويتين متقابلتين قياسهما متساوٍ أيضًا.
يمكن حساب مساحة متوازي الأضلاع من خلال معرفة كل من طول قاعدته وارتفاعه المرسوم كخط وهمي عموديّ على القاعدة بالضرورة، حسب القانون الآتي:
ملاحظة: تتشابه هذه الصيغة مع قانون حساب مساحة المستطيل المتعارف عليه، وسبب ذلك هو التشابه بين هذين الشكلين الرباعيين، فكل متوازي أضلاع يمكن تحويله إلى مستطيل بتحريكه باتّجاه ما.
يعرف قطرا المستطيل بأنهما خطّين متقاطعين داخله، يقسم كل منهما متوازي الأضلاع إلى مثلثين متطابقين تمامًا بالمساحة، كما ينصّف كل منهما الآخر، ويمكن حساب مساحة متوازي الأضلاع عند معرفة القطرين شرط معرفة قياس الزاوية المحصورة بينهما، من خلال القانون الآتي:
مساحة متوازي الأضلاع= 1/2× حاصل ضرب القطرين× جا (الزاوية المحصورة بينهما)
تُحسب مساحة متوازي الأضلاع باستخدام علم المثلثات من خلال معرفة أطوال ضلعين فيه والزاوية المحصورة بينهما، وذلك من خلال اتّباع عدد من الخطوات:
مساحة متوازي الأضلاع= طول ضلعين متجاورين فيه× جا (الزاوية المحصورة بينهما)
فيما يأتي بعض الأمثلة على حساب مساحة متوازي الأضلاع:
مثال 1: إذا كان طول قاعدة متوازي أضلاع 5 سم، وارتفاعه 3 سم، احسب مساحته.
مثال 2: إذا علمت أنّ طول قاعدة متوازي الأضلاع تساوي مثلي ارتفاعه، وكان ارتفاعه يساوي 2 سم، فاحسب مساحته.
مثال 1: إذا كانت أطوال أقطار متوازي أضلاع 6 سم، و3 سم، وكانت الزاوية المحصورة بينهما 60 درجة، احسب مساحة متوازي الأضلاع.
مثال 2: إذا كانت طول القطر الأطول في متوازي أضلاع 4 سم، والأقصر 3 سم، وكانت الزاوية المحصورة بينهما 150 درجة، احسب مساحة متوازي الأضلاع.
مثال 1: إذا كان طول أحد ضلعي متوازي الأضلاع 7 سم، وطول الضلع المجاور له 3 سم، وقياس الزاوية المحصورة بينهما 30 درجة، احسب مساحة متوازي الأضلاع.
مثال 2: إذا كان طول الأضلاع المتوازية في متوزاي الأضلاع: 4 سم، و3 سم، وكانت الزاوية المحصورة بين كل ضلعين متجاورين تساوي 90 درجة، احسب مساحة متوازي الأضلاع.
متوازي الأضلاع هو أحد الأشكال ثنائية الأبعاد رباعية الأضلاع، يتميز بعدد من الخصائص ومنها أن فيه كل ضلعين متقابلين متوازيين ومتساويين، وفيه كل زاويتين متقابلتين متساويتين، كما يمكن حساب عدد الوحدات المربعة التي يغطيها من خلال استخدام واحد من ثلاثة قوانين حسب المعطيات التي يقدمّها السؤال؛ أولها قانون يتطلب وجود طول القاعدة والارتفاع لمتوازي الأضلاع، وثانيها يتطلب إعطاء أقطار متوازي الأضلاع والزاوية المحصورة بينهما، وثالثها يتطلّب إعطاء طول ضلعي متوازي الأضلاع بالإضافة إلى الزاوية المحصورة بينهما.