كيفية حساب الانحراف المعياري

يمكن تعريف الانحراف المعياري (بالإنجليزية: Standard Deviation) بأنه مقدار بُعد البيانات وانتشارها بالنسبة للوسط الحسابي، أما رمز الانحراف المعياري فهو الرمز (σ)، ويمكن إيجاده عن طريق حساب الجذر التربيعي للتباين، ويختلف الانحراف المعياري عن التباين من ناحية أن الانحراف المعياري يقيس تشتت البيانات ومقدار اختلافها عن المتوسط الحسابي، أما التباين فيصف اختلافها، ويحدد مقدار انتشار البيانات وبعدها عن بعضها البعض وعن المتوسط الحسابي.
يتم تحديد كل من المتوسط الحسابي والانحراف المعياري معاً شكل المنحنى الطبيعي لمجموعة البيانات؛ فالمتوسط الحسابي يحدد مركز هذه البيانات أو منتصفها، ومقدار ارتفاع المنحنى الطبيعي، أما الانحراف المعياري فيحدد مقدار عرض ذلك المنحنى، ويجدر بالذكر أنه كلما اقترب الانحراف المعياري من القيمة (0)، فذلك يعني أن القيم الموجودة أكثر قرباً للمتوسط الحسابي، وفي المقابل تُشير القيم الكبيرة من الانحراف المعياري إلى بعد القيم عن المتوسط الحسابي.يجدر بالذكر هنا أن هناك نوعين من الانحراف المعياري، هما:
(بالإنجليزية: Sample Standard Deviation) ويُرمز له بالرمز (S)، ويستخدم إذا كانت البيانات المستخدمة في حساب الانحراف المعياري لا تمثّل كامل البيانات في المجتمع أو الدراسة، وإنما عينة منها، بسبب كثرة عدد أفراد أو أعضاء الدراسة أو المجتمع، ويُحسب الانحراف المعياري في هذه الحالة باستخدام العلاقة الآتية:
(بالإنجليزية: Population Standard Deviation) ويُرمز له بالرمز (σ)، ويُستخدم عند استخدام كافة أفراد المجتمع أو الدراسة كبيانات حساب الانحراف المعياري، وذلك كما في المثال السابق:
يحسب الانحراف المعياري من خلال حساب المتوسط الحسابي، وهو: المتوسط الحسابي= (مركز الفئة×التكرار)/مجموع التكرارات
إذا كان عدد الطلاب اللذين تتراوح علاماتهم بين 4، و8 هو 3 طلاب، وعدد الطلاب الذين تتراوح علاماتهم بين 8، و12 هو 6 طلاب، وعدد الطلاب الذين تتراوح علاماتهم بين 12، و16 هو 4 طلاب، وعدد الطلاب الذين تتراوح علاماتهم بين 16، و20، فما هو الانحراف المعياري لهذه القيم؟
المتوسط الحسابي = مجموع القيم/عددها= (6+2+3+1)/4= 12/4 = 3.
وبالتالي فإن الانحراف المعياري = (14/4)√ = 1.87 تقريباً.
المتوسط الحسابي = مجموع القيم/عددها = (6+4+2+2+1)/5 = 15/5 = 3.
المتوسط الحسابي = مجموع القيم/عددها = 4+9+11+12+17+5+8+12+14 = 92/9 = 10.222 تقريباً.
وبالتالي فإن الانحراف المعياري = [139.55/9]√ = 3.94.